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Abstract: Blind image deconvolution plays a very important role in the fields such as astro-
nomical observation and fluorescence microscopy imaging, in which the noise follows Poisson
distribution. However, due to the ill-posedness, it is a very challenging task to reach a satisfactory
result from a single blurred image especially when the power of the Poisson noise is at a
high level. Therefore, in this paper, we try to achieve high-quality restoration results with
multi-blurred images which are contaminated by Poisson noise. Firstly, we design a novel sparse
log-step gradient prior which adopts a mixture of logarithm and step functions to regularize the
image gradients and combine it with the Poisson distribution to formulate the blind multi-image
deconvolution problem. Secondly, we incorporate the methods of variable splitting and Lagrange
multiplier to convert the original problem into sub-problems, then we alternately solve them to
achieve the estimation of all the blur kernels of corresponding blurred images. Besides, we also
design a non-blind multi-image deconvolution algorithm which is based on the log-step gradient
prior to reach the final restored image. Experimental results on both synthetic and real-world
blurred images show that the proposed prior is very capable of suppressing negative artifacts
caused by ill-posedness. The algorithm can achieve restored image of very high quality which is
competitive with some state-of-the-art methods.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Image blur is usually modeled by convolving the latent image with a blur kernel plus different
types of noise. Astronomical observation and fluorescence microscopy imaging are two typical
fields in which the Poisson noise dominates. In astronomical observation, because of low
illumination, long exposure time has to be taken, the obtained image tends to be blurred due to
mechanical vibration or atmospheric disturbance. While in fluorescence microscopy imaging,
since the depth of field is very small, blur caused by defocus occurs frequently. Besides, in order
to reduce the possibility of photo-damage to the sample caused by excitation laser, the exposure
time must be controlled very short which means the Poisson noise in the obtained image may be
of high level.

Image deconvolution is the inverse estimation of the latent image from the blurred. According
to whether the blur kernel is known, it is divided into two categories, i.e., non-blind deconvolution
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and blind deconvolution. In non-blind deconvolution, the blur kernel is measured by some
auxiliary means and only the latent image needs to be restored, while in blind deconvolution,
both the blur kernel and latent image needs to be estimated. However, image deconvolution is
inherently ill-posed which means that the solution tends to be contaminated by amplified noise
and ringing artifacts [1]. The type and level of the noise, the energy distribution of the blur
kernel significantly affect the quality of the result, thus it is necessary to introduce some extra
constraints to form new regularized problems whose solutions are more stable.

Maximum a-posteriori (MAP) estimation is one of the most commonly used methods to
construct regularized deconvolution problem models. Take blind image deconvolution as example,
it combines the distribution of the noise, the prior distributions of the latent image and blur
kernel to construct an optimization problem. In practice, researchers usually adopt Gaussian
distribution to model the noise and have proposed many approaches [2–6], but in some specific
environments such as astronomical observation and fluorescence microscopy imaging, the noise
evidently follows Poisson distribution, it is unreasonable to model the problem with Gaussian
distribution, this is the reason why we focus on Poissonian image deconvolution in this paper
(for simplicity, we use the word “Poissonian” to denote “Poisson noise contaminated” or similar
expressions in this paper).

In the related work, almost all the researches focus on non-blind or blind single Poissonian
image deconvolution. Nowadays, with the development of modern imaging systems, it is very
easy to capture multiple images of the same scene. Therefore, under poor imaging conditions
where image blur and heavy Poisson noise is inevitable, we can obtain multi-blurred images
of the target. Because multi-blurred images contain complementary information, we may use
them to achieve better results than using single blurred image. Therefore, we aim to obtain
restored images of high quality from multi-Poissonian blurred images in this paper. The main
contributions are as follows:

Firstly, we construct a sparse prior which combines the logarithm and step functions to penalize
the square of image gradients (for simplicity, we call it log-step gradient prior in the following
parts). In contrast to the classic priors such as total variation (TV) and L0-norm based priors, it is
more capable of suppressing negative artifacts under heavy Poisson noise.

Secondly, we prove that the core problem accompanied with the log-step gradient prior has a
closed-form solution. Based on which, we convert the original problem into easier sub-problems
and design an efficient optimization algorithm to achieve the result.

We use synthetic and real-world blurred images to evaluate the proposed algorithm, experi-
mental results show that it outperforms some state-of-the-art methods.

The rest of this paper is organized as follows. In Section 2, we make a detailed introduction
of the related work. In Section 3, we present the sparse log-step gradient prior and formulate
the problem. In Section 4, we demonstrate the optimization approach. In Section 5, we test our
approach on both synthetic and real-world blurred images. Finally, we make a conclusion in
Section 6.

2. Related work

Regularization is very important for image deconvolution. In MAP estimation, constructing
regularization terms is equivalent to designing priors which can formulate the probabilistic
distributions of the latent image and blur kernel. Markov Random Fields theory and Hammersley-
Clifford theorem [7] provide an exercisable way for constructing priors. Roughly, there are mainly
two kinds of priors, i.e., Gaussian prior and sparse prior. The typical Gaussian priors such as
Tikhonov regularization [8,9] introduces quadric term in the problem model which is easy to
solve, but the restored image tends to be ambiguous on edges and degraded by negative artifacts,
thus Gaussian priors are not very suitable for image deconvolution in the condition of heavy
noise. In contrast, sparse priors are very capable of suppressing negative artifacts, e.g., in recent
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years, the L1-norm and Lp-norm (0< p< 1) based priors have been widely used in non-blind
image deconvolution and proven to be very effective [10,11]. The L0-norm based prior has
been successfully adopted in blind image deconvolution because it can result in restored image
with sharp edges and smooth regions which is very beneficial for blur kernel estimation [12,13].
Besides, there are also some robust sparse priors of other types, e.g., the Fields of Experts [14,15]
and Gaussian Scale Mixture Fields of Experts [16] which are trained from natural images.

How to design efficient algorithms to solve the sparse prior regularized deconvolution problem
is another important research field. Specific to non-blind Poissonian image deconvolution, since
the Poissonian fidelity term is non-quadratic, it is not an easy task to solve the regularized
Poissonian deconvolution problem. In [17] and [18], the authors propose a one-step-late
framework which is derived from the Expectation-Maximization (EM) method, many subsequent
researches take it as reference, e.g., in [19] and [20], the one-step-late method is used to solve the
deconvolution problem regularized by TV and natural image gradient prior, respectively. In [21]
and [22], it is used to solve the Tikhonov and a sparse representation regularized deconvolution
problem to improve the quality of the 4Pi-microscopy image. In [23] and [24], the authors
propose the residual RL (RL is short for Richardson-Lucy algorithm [25,26]), gain controlled
RL and joint bilateral RL which are also based on the one-step-late framework. However, the
problem is that if the noise power is at a high level, the one-step-late method is of low efficiency
and may not converge to satisfactory result. Another classic framework for solving the non-blind
Poissonian deconvolution problem is the alternating direction method of multipliers (ADMM)
[27], which converts the original problem into simpler sub-problems and alternately solve them
to reach the final result. Similarly, the authors of [28] propose to use the split Bregman approach
to simplify the original problem. In contrast to the one-step-late scheme, the two methods are
more efficient and stable, therefore, just like the one-step-late approach, the ADMM and split
Bregman methods are also widely used as guidance to solve various regularized Poissonian
deconvolution problems [29–31]. Furthermore, they are also improved for better performance,
e.g., the authors of [32] propose a fast algorithm based on the variable splitting approach to solve
the TV regularized deconvolution problem, while [33] utilizes the second-order Taylor expansion
to linearize the quadratic term and design a general inverse operator to accelerate the iterative
steps.

In blind Poissonian image deconvolution, the above two frameworks are also very widely used,
e.g., in [34], the Huber-Markov random field is used to regularize the latent image, the original
problem is first divided into two non-blind deconvolution problems, one is with respect to the
latent image and the other is with respect to the blur kernel, they are alternately solved with the
one-step-late approach to reach the result. Similarly, the methods in [35] and [36] propose to use
the sparse L1-norm constraint on wavelet or framelet coefficients of the latent image, the authors
adopt the split Bregman method to solve for the latent image, the blur kernel is also estimated with
the one-step-late method. In [37], the authors use the L0-norm to model the redundant analysis
(e.g., curvelet or framelet) of the latent image and TV to regularize the blur kernel, the latent
image is estimated with the Greedy Analysis Pursuit (GAP) algorithm but the blur kernel is still
estimated with the one-step-late method. In [38], the authors incorporate the L0-norm operator
and TV to regularize the latent image and blur kernel, respectively. The main contribution
is that they completely abandon the one-step-late scheme. Instead, they design an approach
which combines the methods of variable splitting and Lagrange multiplier to convert the original
problem into three sub-problems, then propose an alternating minimization algorithm which
can estimate the blur kernel, latent image and Lagrange multiplier simultaneously. However,
although there have been many single blind image deconvolution algorithms, it shows that when
the blur kernel is large or the noise level is high, it is very difficult for them to reach acceptable
result due to ill-posedness.



Research Article Vol. 32, No. 6 / 11 Mar 2024 / Optics Express 9064

In multi-image deconvolution, more than one blurred versions of the same latent image
are provided. Since the blur kernels for generating multi-blurred images may be different
one from the other and the noise is random, the information degraded in one blurred image
may be retained in others, the restored image may be of better quality than that of the single
blind image deconvolution. Until now, most of the blind multi-image deconvolution methods
consider Gaussian noise, e.g., the method in [39] takes Laplacian operator to construct Tikhonov
regularization terms to estimate the latent image and blur kernels. The authors of [40] propose a
method which takes TV for regularization, and [41] uses the results of [40] as initial input and
propose a blur kernel refinement method. In [42], the Huber-Markov random field is used for
regularization. In [43] and [44], a coupled penalty function for the latent image and blur kernels is
proposed, it links the unknown latent image along with the blur kernel and noise variance of each
observation, all the variables are estimated jointly under a marginalization framework. In [45], the
variational Bayesian approach is used to solve the multi-image deconvolution problem, which can
adjust the parameters automatically and achieve higher image quality. In [46], the latent image
and blur kernels are represented by groups of sparse domains to exploit the local and nonlocal
information, the sparse solution is promoted by using the split-Bregman algorithm to solve the
L1-norm optimization problem. In [47], a blind multi-image deconvolution algorithm which is
based on the low-rank representation is presented. In [48], a new method relies on a novel sparse
prior named smoothed normal with unknown variance (NUV) is proposed, the prior promotes
piecewise smooth image with sharp edges which is very useful for blur kernel estimation. In
[49], the authors improve the blind multi-image deconvolution method proposed in [50], which
uses the hyper-Laplacian prior (Lp-norm of image gradients) and L1-norm to regularize the latent
image and blur kernels, respectively. The method has been used very successfully in restoring
the real multi-blurred images captured by an imaging system with rotational rectangular aperture.
Besides the above mentioned, there are also some multi-image deconvolution methods which take
different types of degraded images as input, e.g., the approach with noisy blurred pairs [23,51].

3. Log-step gradient prior and problem model

3.1. Log-step gradient prior

Just as mentioned in Section 2, sparse priors play a very important role in improving the
ill-posedness of deconvolution problem. In the following paragraphs, we will make a detailed
analysis of some classic sparse priors and demonstrate the characteristics of the proposed prior.

In Fig. 1, the black dotted line denotes the real probabilistic distribution of horizontal gradients
of the natural image “cameraman.tif” which is commonly used in image processing. The green,
blue and cyan curves denote the L0-norm (Eq. (1)), L1-norm (Eq. (2)), and Lp-norm (Eq. (3))
gradient priors, respectively. To make a clear comparison, the image gradient is normalized
to [-1, 1] and the logarithms of the real distribution and different priors are normalized to [0,
1]. Meanwhile, in Fig. 2, we present a blurred image contaminated by heavy noise and the
corresponding restored images with these sparse priors.

L0(o) =
N∑︂

i=1
Step(|dxo|i + |dyo|i), (1)

L1(o) = | |dxo| |1 + | |dyo| |1, (2)

Lp(o) = | |dxo| |pp + | |dyo| |pp (0<p<1), (3)

where o is the latent image, dx and dy represent the convolution matrices of the horizontal and
vertical difference operators, respectively. N is the number of pixels in o and i is the pixel index.
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The Step function is defined as follow.

Step(x) =
⎧⎪⎪⎨⎪⎪⎩

1, x>0

0, x ≤ 0
. (4)

Fig. 1. Comparison of curves of different sparse priors.

Fig. 2. Performances of different sparse priors. (a) Clear image. (b) Blurred image and
blur kernel. (c) Result of L0-norm gradient prior. (d) Result of L1-norm gradient prior. (e)
Result of Lp-norm gradient prior. (f) Result of log gradient prior. (g) Result of log-step
gradient prior.

As pointed out in [52–55], since the image details cannot be accurately estimated in the
intermediately restored image in iterative blind image deconvolution methods, they should be
suppressed along with the negative artifacts by sparse priors to ensure the quality of estimated
blur kernel. In other words, the accuracy of the estimated blur kernel mainly depends on the
salient edges in the intermediately restored image. We can see from Fig. 1 (a) that the L0-norm
gradient prior has a non-distinctive heavy penalty on all the gradients except the zero-gradient,
thus it tends to suppress image details as much as possible, the edges in the resulted image will
be sharpened and some useful edges may also be wrongly removed. Just as shown in Fig. 2 (c),
the restored image of L0-norm gradient prior has sharp edges but some useful contents in the
background are removed. In contrast, the L1-norm gradient prior has a linear penalty on the
gradients, it is capable to preserve more image details but tends to result in ambiguous edges,
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e.g., the restored image in Fig. 2 (d). The performance of Lp-norm gradient prior (Fig. 2 (e)) is
between the above two priors, it is evident that as p → 0, its performance approximates to the
L0-norm gradient prior, while as p → 1, it is like the L1-norm gradient prior. However, there are
two main problems with the Lp-norm gradient prior, the first is that it usually results in a difficult
sub-optimization problem if p is not equal to 1/2 and 2/3 [11]. Secondly, we find that both of the
L0-norm and Lp-norm gradient priors are sensitive to heavy noise in the blurred image, e.g., the
restored images in Fig. 2 (c) and Fig. 2 (e) contain some amplified noise. If we want to suppress
it, we must enhance the penalty, but many useful contents especially some salient edges will be
wrongly smoothed out. To overcome these problems, we first propose a sparse prior in Eq. (5)
which is formulated by the sum of logarithm of the squared image gradients. For simplicity, we
call it log gradient prior and denote it by ρ(o).

ρ(o) =
N∑︂

i=1
log{1 + µ[(dxo)2i + (dyo)2i ]}, (5)

where the parameter µ>0.
The red curve in Fig. 1 (a) shows ρ(o) when µ = 1000. We can easily infer that as µ→ +∞, it

is approximates to the L0-norm gradient prior while as µ→ 0, it is puts less penalty on all the
gradients. We also use it to restore the blurred image in Fig. 2 (b), it can be seen from the result
in Fig. 2 (f) that the image edges are as sharp as that of L0-norm (Fig. 2 (c)) and Lp-norm gradient
priors (Fig. 2 (e)), the noise is successfully suppressed and some contents in the background are
reserved.

Besides, we also incorporate the step function in Eq. (4) to further improve ρ(o), it is just like
incorporating the L0-norm gradient prior into ρ(o) and the final expression of the proposed prior
is show in Eq. (6). For simplicity, we call it log-step gradient prior in the following parts.

ψ(o) =
N∑︂

i=1
log{1 + (α − 1)Step[(dxo)2i + (dyo)2i ]+µ[(dxo)2i + (dyo)2i ]}, (6)

where the parameter α ≥ 1.
In contrast to log gradient prior, the log-step gradient prior is more effective in suppressing the

wrongly estimated image details and negative artifacts in the restored image. In Fig. 1 (b), we
make a comparison between the curves of ρ(o) and ψ(o) where µ = 1000 and α = 10. We can
see that a larger value of α makes the curve of log-step gradient prior become lower around zero,
which means the image details corresponding to small gradients will be further removed than that
of ρ(o). We present the restored image of log-step gradient prior in Fig. 2 (g), we can see that the
background is of less image details than that in Fig. 2 (f) while the edges are as sharp, which
will be beneficial for iterative blur kernel estimation. In addition, the log-step gradient prior will
result in a sub-optimization problem with closed-form solution which can be solved efficiently by
finding the roots of a cubic equation for any values of α and µ, as will be shown in Section 4.

3.2. Deconvolution problem model

The formation of Poissonian blurred image can be modeled by the following expression:

g = Poisson(ho), (7)

where g and o denote the vector forms of the blurred image and latent image, respectively; h
represents the convolution matrix of the blur kernel. The function Poisson represents the Poisson
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noise degradation process, i.e.,

P(g|h, o) =
N∏︂

i=1

exp[−(ho)i](ho)gi
i

gi!
. (8)

Blind multi-image deconvolution aims to estimate the latent image and blur kernels from
a sequence of blur images. Let g1· · ·K represents the set of K blurred images {g1, g2, · · · , gK}
and h1· · ·K denotes the set of blur kernels {h1, h2, · · · , hK} for corresponding blurred images.
According to the MAP estimation framework, the problem can be formulated by

(h1· · ·K , o) = arg min(h1···K ,o) − log[P(h1· · ·K , o|g1· · ·K)]

= arg min(h1···K ,o) − log[P(g1· · ·K |h1· · ·K , o)] − log[P(o)] − log[P(h1· · ·K)]
, (9)

where P(g1· · ·K |h1· · ·K , o) and P(h1· · ·K) represent the joint distributions of the noise and blur
kernels, respectively. P(o) denotes the prior distribution of the latent image.

Considering the topic discussed in this paper, we assume that each pixel in different blurred
images is independent and follows the Poisson distribution, then

− log[P(g1· · ·K |h1· · ·K , o)] = −

K∑︂
k=1

P(gk |hk, o) ∝

K∑︂
k=1

N∑︂
i=1

{(hko)i − (gk)i ln[(hko)i]}, (10)

where k is the image and blur kernel index. We also suppose that each hk in h1· · ·K is independent
identically distributed and adopt TV for regularization, then we obtain

− log[P(h1· · ·K)] = −

K∑︂
k=1

P(hk) ∝

K∑︂
k=1

J∑︂
j=1

√︂
(dxhk)

2
j + (dyhk)

2
j , (11)

where J is the number of pixels in each hk and j denotes the pixel index. The TV regularization
can help to suppress negative artifacts in the estimated blur kernels.

We adopt the proposed log-step gradient prior to model the term − log[P(o)] and introduce
two regularization parameters λ and ξ, then we combine Eq. (6), (9), (10), and (11) to form the
final optimization problem in Eq. (12), i.e.,

(h1· · ·K , o) = arg min(h1···K ,o)λ
K∑︁

k=1

N∑︁
i=1

{(hko)i − (gk)i log[(hko)i]}

+
N∑︁

i=1
log{1 + (α − 1)Step[(dxo)2i + (dyo)2i ] + µ[(dxo)2i + (dyo)2i ]} + ξ

K∑︁
k=1

J∑︁
j=1

√︂
(dxhk)

2
j + (dyhk)

2
j

.

(12)

4. Optimization approach

In this section, we will give a detailed description about how to solve the problem in Eq. (12).
To obtain restored image of high quality, just like most blind deconvolution methods [52–55],
the proposed algorithm consists of two phases, i.e., multi-blur kernel estimation and non-blind
multi-image deconvolution.

4.1. Framework for multi-blur kernel estimation

The problem in Eq. (12) is a difficult non-convex optimization problem, we propose an approach
based on the methods of Lagrange multiplier and variable splitting to convert it into a simple
convex optimization problem and a blind multi-image deconvolution problem with quadratic
fidelity term.
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Firstly, we introduce a set of auxiliary variables u1· · ·K = {u1, u2, · · · , uK} to approximate the
terms {h1o, h2o, · · · , hKo}, then the problem in Eq. (12) is equivalent to the following problem:

(h1· · ·K , u1· · ·K , o) = arg min(h1···K ,u1···K ,o)λ
K∑︁

k=1

N∑︁
i=1

{(uk)i − (gk)i log[(uk)i]}

+
N∑︁

i=1
log{1 + (α − 1)Step[(dxo)2i + (dyo)2i ] + µ[(dxo)2i + (dyo)2i ]} + ξ

K∑︁
k=1

J∑︁
j=1

√︂
(dxhk)

2
j + (dyhk)

2
j

Subject to | |hko − uk | |
2
2 = 0

,

(13)
where k = 1, 2, · · ·K.

According to the method of Lagrange multiplier, there should exist a set of multipliers
{β1, β2, · · · , βK} which can be used to convert the constrained optimization problem in Eq. (13)
into a unconstrained optimization problem. To lower the difficulty, we assume that all the
multipliers are of equal value, i.e., βk = β, k = 1, 2, · · ·K. Then the problem in Eq. (13) is
transformed into the following expression:

(h1· · ·K , u1· · ·K , o) = arg min(h1···K ,u1···K ,o)λ
K∑︁

k=1

N∑︁
i=1

{(uk)i − (gk)i log[(uk)i]} +
K∑︁

k=1

β
2 | |hko − uk | |

2
2

+
N∑︁

i=1
log{1 + (α − 1)Step[(dxo)2i + (dyo)2i ] + µ[(dxo)2i + (dyo)2i ]} + ξ

K∑︁
k=1

J∑︁
j=1

√︂
(dxhk)

2
j + (dyhk)

2
j

.

(14)
We split Eq. (14) into two optimization problems and alternately solve them to reach the

solution, i.e., sub-problem with respect to u1· · ·K in Eq. (15) and sub-problem with respective to
h1· · ·K and o in Eq. (16). For simplicity, we call them u-problem and ho-problem, respectively.
Just like the methods in [52–55], we only retain the estimated h1· · ·K for subsequent non-blind
multi-image deconvolution.

The u-problem:

u1· · ·K = arg min
u1···K

λ

K∑︂
k=1

N∑︂
i=1

{(uk)i − (gk)i log[(uk)i]} +

K∑︂
k=1

β

2
| |hko − uk | |

2
2 , (15)

The ho-problem:

(h1· · ·K , o) = arg min(h1···K ,o)
K∑︁

k=1

β
2 | |hko − uk | |

2
2

+
N∑︁

i=1
log{1 + (α − 1)Step[(dxo)2i + (dyo)2i ] + µ[(dxo)2i + (dyo)2i ]} + ξ

K∑︁
k=1

J∑︁
j=1

√︂
(dxhk)

2
j + (dyhk)

2
j

.

(16)

4.2. Algorithm for solving the u-problem

The u-problem can be divided into KN independent sub-problems:

(uk)i = arg min
(uk)i

J[(uk)i] = arg min
(uk)i

λ{(uk)i − (gk)i log[(uk)i]} +
β

2
[(hko)i − (uk)i]

2. (17)

Since (uk)i>0 and d2J[(uk)i]/d(uk)
2
i >0, the problem in Eq. (17) is convex and the solution is

the positive root of dJ[(uk)i]/d(uk)i = 0, i.e.,

β(uk)
2
i + [λ − β(hko)i](uk)i − λ(gk)i = 0. (18)

Because −λ(gk)i<0 and β>0, Eq. (18) has only one positive root:

(uk)i =
1

2β

{︃
β(hko)i − λ +

√︂
[λ − β(hko)i]2 + 4βλ(gk)i

}︃
. (19)

Since all (uk)i are independent, they can be solved in parallel to reach the estimation of uk.
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4.3. Algorithm for solving the ho-problem

We propose an alternating minimization algorithm to solve the ho-problem. For simplicity, we
use the o-problem and h-problem to denote the optimization problem respect to o and h1· · ·K ,
respectively, i.e.,

The o-problem:

o = arg min
o

K∑︂
k=1

β

2
| |hko − uk | |

2
2+

N∑︂
i=1

log{1 + (α − 1)Step[(dxo)2i + (dyo)2i ] + µ[(dxo)2i + (dyo)2i ]}.

(20)
The h-problem:

h1· · ·K = arg min
h1···K

K∑︂
k=1

β

2
| |hko − uk | |

2
2 + ξ

K∑︂
k=1

J∑︂
j=1

√︂
(dxhk)

2
j + (dyhk)

2
j . (21)

4.3.1. Algorithm for solving the o-problem

The algorithm for solving o-problem is the core of the paper and we propose to use the quadratic
penalty method. We first introduce two auxiliary variables w and v to approximate the terms dxo
and dyo, respectively, the o-problem in Eq. (20) is converted into the following equation:

(o, w, v) = arg min(o,w,v)
K∑︁

k=1

β
2 | |hko − uk | |

2
2 +

η
2 | |dxo − w| |22

+
η
2 | |dyo − v| |22 +

N∑︁
i=1

log{1 + (α − 1)Step[w2
i + v2

i ] + µ[w
2
i + v2

i ]}

, (22)

where η>0 is the penalty parameter. It is known that as η → +∞, the solution of Eq. (22)
converges to that of Eq. (20).

According to the quadratic penalty method, the solution of Eq. (22) can be reached by iteratively
implementing the following steps:

Step 1: solving o with Eq. (23)

o = arg min
o

K∑︂
k=1

β

2
| |hko − uk | |

2
2 +

η

2
| |dxo − w| |22 +

η

2
| |dyo − v| |22 . (23)

Step 2: solving w and v with Eq. (24)

(w, v) = arg min(w,v)
η
2 | |dxo − w| |22 +

η
2 | |dyo − v| |22

+
N∑︁

i=1
log{1 + (α − 1)Step[w2

i + v2
i ] + µ[w

2
i + v2

i ]}
. (24)

Step 3: updating η by η = τη, where τ>1.

a) Solving the problem in step 1:

For step 1, the solution of Eq. (23) has a closed-form solution in frequency domain,

F(o) =
β
∑︁K

k=1 F∗(hk) ◦ F(uk) + ηF∗(dx) ◦ F(w) + ηF∗(dy) ◦ F(v)
β
∑︁K

k=1 F∗(hk) ◦ F(hk) + ηF∗(dx) ◦ F(dx) + ηF∗(dy) ◦ F(dy)
, (25)

where F denote the Fourier transform, ∗ is the conjugate operator, ◦ represents the component-
wise multiplication and the division operation is also component-wise. Then o can be reached
with the inverse Fourier transform.
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b) Solving the problem in step 2:

For step 2, since all (wi, vi) are independent, the problem in Eq. (24) can be divided into N
sub-problems, i.e.,

(wi, vi) = arg min(wi,vi)Ji(wi, vi)

= arg min(wi,vi)
η
2 [(dxo)i − wi]

2 +
η
2 [(dyo)i − vi]

2 + log{1 + (α − 1)Step[w2
i + v2

i ] + µ[w
2
i + v2

i ]}
.

(26)
We can derive the following two propositions. The proofs are given in Supplement 1.

Proposition 1.

1) if (dxo)i = 0 and (dyo)i = 0, then (wi, vi) = (0, 0).

2) if (dxo)i ≠ 0, (dyo)i ≠ 0 and w2
i + v2

i ≠ 0, then wi and vi meet wi/(dxo)i = vi/(dyo)i = ri,
where 0<ri<1 and ri is one real root of the cubic equation in Eq. (27).

3) if (dxo)i ≠ 0, (dyo)i = 0 and w2
i + v2

i ≠ 0, then wi meet wi/(dxo)i = ri, where 0<ri<1 and
ri is one real root of the cubic equation in Eq. (27), vi = 0.

4) if (dxo)i = 0, (dyo)i ≠ 0 and w2
i + v2

i ≠ 0, then vi meet vi/(dyo)i = ri, where 0<ri<1 and
ri is one real root of the cubic equation in Eq. (27), wi = 0.

µηmir3
i − µηmir2

i + (µ + αη)ri − αη = 0, (27)

where mi = (dxo)2i + (dyo)2i .

Proposition 2. The cubic equation in Eq. (27) has at least one real root and all the real roots
locate in the open interval (0, 1).

The above two propositions present an approach for solving Eq. (26), i.e.,
If (dxo)2i + (dyo)2i = 0, according to the conclusion 1) in Proposition 1, (wi, vi) = (0, 0).
If (dxo)2i + (dyo)2i ≠ 0, we should consider two conditions as follows and make several

comparisons to reach the optimal solution:
Condition 1: Suppose that w2

i + v2
i = 0, we calculate Ji(0, 0).

Condition 2: Suppose that w2
i + v2

i ≠ 0, we first construct the cubic equation in Eq. (27)
according to the conclusions 2)-4) in Proposition 1, then we calculate the three roots with standard
formula and eliminate the imaginary roots. Based on Proposition 2, if there is only one real root
ri,1 ∈ (0, 1), the possible solution of Eq. (26) is (w′

i, v′
i) = (ri,1wi,1, ri,1vi,1). If there are three real

roots ri,s ∈ (0, 1), s = 1, 2, 3, we firstly calculate three two-tuples (wi,s, vi,s) = (ri,swi,s, ri,svi,s) and
the corresponding values of Ji(wi,s, vi,s), and afterwards we find the minimum of Ji(wi,s, vi,s) and
the corresponding root ri,m, then the possible solution of Eq. (26) is (w′

i, v′
i) = (ri,mwi,m, ri,mvi,m).

Since Ji(wi, vi) is not continuous at (wi, vi) = (0, 0), Ji(w′
i, v′

i) may be not the minimum
of Eq. (26), we should make another comparison between Ji(0, 0) obtained in condition 1 and
Ji(w′

i, v′
i) to reach the optimal solution (wi, vi) of Eq. (26), i.e.,⎧⎪⎪⎨⎪⎪⎩

(wi, vi) = (0, 0) if Ji(0, 0) ≤ Ji(w′
i, v′

i)

(wi, vi) = (w′
i, v′

i) if Ji(0, 0)>Ji(w′
i, v′

i)
(28)

Based on the above analysis, we can calculate (wi, vi) for all the indices i in parallel and reach
the final solution (w, v) of Eq. (24), the algorithm is given in Algorithm 1.

https://doi.org/10.6084/m9.figshare.25232956
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Algorithm 1. Algorithm for solving (w,v)

If 2 2( ) ( ) 0x i y i d o d o , we should consider two conditions as follows and make several 
comparisons to reach the optimal solution: 

Condition 1: Suppose that 2 2 0i i w v , we calculate (0,0)iJ .
Condition 2: Suppose that 2 2 0i i w v , we first construct the cubic equation in Eq. (27) 

according to the conclusions 2)-4) in Proposition 1, then we calculate the three roots with 
standard formula and eliminate the imaginary roots. Based on Proposition 2, if there is only one 
real root ,1 (0,1)ir  , the possible solution of Eq. (26) is ,1 ,1 ,1 ,1( , ) ( , )i i i i i ir r  w v w v . If there are three 
real roots , (0,1)i sr  , 1,2,3s  , we firstly calculate three two-tuples , , , , , ,( , ) ( , )i s i s i s i s i s i sr rw v w v  
and the corresponding values of , ,( , )i i s i sJ w v , and afterwards we find the minimum of 

, ,( , )i i s i sJ w v  and the corresponding root ,i mr , then the possible solution of Eq. (26) is 

, , , ,( , ) ( , )i i i m i m i m i mr r  w v w v . 

Since ( , )i i iJ w v  is not continuous at ( , ) (0,0)i i w v , ( , )i i iJ  w v  may be not the minimum of 
Eq. (26), we should make another comparison between (0,0)iJ  obtained in condition 1 and 

( , )i i iJ  w v  to reach the optimal solution ( , )i iw v  of Eq. (26), i.e.,
( , ) (0,0) (0,0) ( , )
( , ) ( , ) (0,0) ( , )

i i i i i i

i i i i i i i i

if J J
if J J

  
     

w v w v
w v w v w v

.                                   (28)

Based on the above analysis, we can calculate ( , )i iw v for all the indices i in parallel and 
reach the final solution ( , )w v of Eq. (24), the algorithm is given in Algorithm 1.

Algorithm 1: algorithm for solving ( , )w v

1. initialization:  , 

2. find the indices where 2 2( ) ( ) 0x i y i d o d o  and denote the set by 0I

3. find the indices where 2 2( ) ( ) 0x i y i d o d o and denote the set by 1I
4. for all indices i , do the following in parallel
5. if 0i I , ( , ) (0,0)i i w v , end
6. if 1i I , construct Eq. (27),
7. if Eq. (27) has one real root ,1ir , 

8.  ,1 ,1 ,1 ,1( , ) ( , )i i i i i ir r  w v w v

9. else if Eq. (27) has three real root ,i sr , 1, 2 , 3s 

10.
calculate , , , , , ,( , ) ( , )i s i s i s i s i s i sr rw v w v , find minimum of , ,( , )i i s i sJ w v  and 
the corresponding root ,i mr , , , , ,( , ) ( , )i i i m i m i m i mr r  w v w v

11. end
12. calculate (0,0)iJ  and find ( , )i iw v  with Eq. (28)
13. end
14. end
15. output: ( , )w v

Fig. 3. Algorithm for the problem in Eq. (24).

4.3.2  Algorithm for solving the h-problem

We divide the h-problem in Eq. (21) into K independent sub-problems to get the solution, i.e., 
2 2 2

( , ) 2
1

arg min ( ) ( )
2k

J

k k k x k j y k j
j

 


   h oh h o u d h d h .                          (29)

4.3.2. Algorithm for solving the h-problem

We divide the h-problem in Eq. (21) into K independent sub-problems to get the solution, i.e.,

hk = arg min
(hk ,o)

β

2
| |hko − uk | |

2
2 + ξ

J∑︂
j=1

√︂
(dxhk)

2
j + (dyhk)

2
j . (29)

According to [53], we use the difference operator to modify the fidelity term in Eq. (29) to
accelerate the convergence, i.e.,

hk = arg min
hk

β

2
| |dhko − du| |22 + ξ

J∑︂
j=1

√︂
(dxhk)

2
j + (dyhk)

2
j . (30)

where d = dx + dy. Just like in [38], we adopt the iteratively reweighted least squares (IRLS)
method to solve for hk, then the pixel in it should be normalized by (hk)j = (hk)j/

∑︁
j (hk)j. After

all hk are calculated, we achieve the solution of h1· · ·K .
In order to make an accurate estimation of h1· · ·K ,we usually take heavy penalty to suppress the

negative artifacts in the intermediately restored image o, most details in it are also removed, so
we abandon it and only retain the estimated h1· · ·K , the restored image is finally reached with a
non-blind multi-image deconvolution method presented in the following section.

4.4. Non-blind multi-image deconvolution

The problem model of non-blind multi-image deconvolution is almost the same as Eq. (12) except
that h1· · ·K is known, i.e.,

o = arg minoλ
K∑︁

k=1

N∑︁
i=1

{(hko)i − (gk)i log[(hko)i]}

+
N∑︁

i=1
log{1 + (α − 1)Step[(dxo)2i + (dyo)2i ] + µ[(dxo)2i + (dyo)2i ]}

. (31)
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To reach a final restored image of high quality, we use the quadratic penalty method to solve it.
The details are shown in Supplement 1.

4.5. Parameter setting

In the phase of multi-blur kernel estimation, we usually set 1000 ≤ λ ≤ 15000. The Lagrange
multiplier β is empirically set λ/10<β<λ/5 and ξ = 1000β. η is initialized with 1 and increases
with a factor τ = 2, and the total iteration number is five. For the log-step gradient prior, we
empirically set 1<α ≤ 10 and 1000 ≤ µ ≤ 10000. The total iteration number for IRLS is set
to five. We find that the parameter setting is very related to the noise level and the size of the
blur kernel. Specifically, if the noise is of higher level or the blur kernel is of larger size, the
parameters λ and β should be tuned smaller while α and µ should be tuned larger to suppress the
negative artifacts. If the noise level and the size of the blur kernel are similar for different blurred
images, the setting of the parameters will be of minor change.

In the phase of non-blind multi-image deconvolution, we usually set 1000 ≤ λ ≤ 20000. The
parameters for the log-step gradient prior are set to 1 ≤ α ≤ 2 and 100 ≤ µ ≤ 2000, respectively.

5. Experimental results

5.1. Experimental results of synthetic data

We first use synthetic blurred images to evaluate the proposed method. In [56], the authors
construct a dataset which contains four clear images and eight blur kernels (Fig. 3), and we use
them to generate synthetic multi-blurred images, then we consider two experimental settings: 1)
experiment on multi-blurred images with different blur kernels; 2) experiment on multi-blurred
images with the same blur kernel.

Fig. 3. Clear images and blur kernels in the dataset of [56].

This is because in some conditions, e.g., the random motion caused multi-blurred images, the
blur kernels may be different one from the other. While in some other conditions, e.g., continuous
exposure in fluorescence microscopy observation, the imaging parameters are fixed and the blur
kernels are almost the same. In addition, the noise level may be quite different in various imaging
environments which is also a significant factor that affects the quality of the result. Therefore, in
each of the above settings, we carry out evaluations in two cases: 1) the multi-blurred images are
contaminated by slight Poisson noise; 2) the multi-blurred images are contaminated by heavy
Poisson noise.

Based on the above analysis, there will be four experimental configurations, i.e., A: multi-
blurred images with different blur kernels and slight Poisson noise; B: multi-blurred images with
different blur kernels and heavy Poisson noise; C: multi-blurred images with the same blur kernel
and slight Poisson noise; D: multi-blurred images with the same blur kernel and heavy Poisson
noise.

https://doi.org/10.6084/m9.figshare.25232956
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Fig. 4. Experimental results of multi-blurred images with different blur kernels and slight
Poisson noise. (a) Eight blurred images and the corresponding blur kernels. (b) The chosen
blurred image with the smallest blur kernel. (c) L1-framelet [36], PSNR: 23.80 dB, SSIM:
0.5588. (d) L0-framelet [37], PSNR: 23.63 dB, SSIM: 0.7576. (e) L0-gradient [38], PSNR:
27.63 dB, SSIM: 0.8391. (f) Dual-L0 prior [57], PSNR: 33.69 dB, SSIM: 0.9462. (g)
Surface-aware prior [58], PSNR: 33.12 dB, SSIM: 0.9469. (h) Our log-step gradient prior,
PSNR: 34.31 dB, SSIM: 0.9498.

To prove the effectiveness of our approach, we take four experiments for configurations A
and B, respectively. We also take 16 experiments for configurations C and D, respectively. We
first compare our approach with some state-of-the-art blind deconvolution methods for single
Poissonian blurred image, i.e., the methods in [36–38]. For simplicity, we denote them by
the methods of L1-framelet, L0-framelet, and L0-gradient in the following subsections. For
configurations A and B, we choose to restore the blurred image generated from the smallest blur
kernel with these methods, while for configurations C and D, we calculate the average of the
multi-blurred images and restore it.

Besides, we also try to use two robust priors which are raised in recent researches to substitute
the log-step gradient prior in our problem model in Eq. (12), they are the dual L0-norm of image
intensity and gradient prior [57] and the surface-aware prior [58] (just as mentioned in [58], we
only adopt the surface-aware prior to estimate the blur kernels, the latent image is reached with
the TV regularized non-blind multi-image deconvolution method). For simplicity, we denote
them by the methods of dual-L0 prior and surface-aware prior in the following subsections,
respectively.

We use the popular image quality assessment method, i.e., the peak signal-to-noise ratio
(PSNR) and structural similarity index method (SSIM) [59] to evaluate the restored images of
different methods. Since there are too many images of all the experiments, due to the length
limitation of the paper, we only show the results of one experiments in the following parts. The
readers can refer to Supplement 1 for all the other results.

The example belongs to the experimental configuration A. In Fig. 4(a), the input degraded
multi-images are generated with the first image and the eight different blur kernels in Fig. 3, they

https://doi.org/10.6084/m9.figshare.25232956
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are contaminated by slight Poisson noise. In Fig. 4(b), we select the blurred image in the first
row and third column whose corresponding blur kernel is of the smallest size and use the three
single image deconvolution methods to restore it, the results are shown in Fig. 4(c)-(e).

We also use blind multi-image deconvolution methods with the dual-L0 [57], surface-aware
[58], and log-step gradient priors for restoration, the results are shown in Fig. 4(f)-(h). The PSNR
and SSIM values for each restored image are given in the figure caption. Comparing the results
with the ground truth in Fig. 3, it is evident that our approach achieves the best result.

Furthermore, we calculate the PSNR and SSIM values of all the restored images of different
deconvolution methods. Due to the length limitation of the paper, the data are listed in the tables
in Supplement 1. For clarity, we plot the PSNR and SSIM curves of different deconvolution
methods in Fig. 5 to make a comparison. We can see that the proposed log-step gradient prior
performs better than the other methods.

Fig. 5. PSNR and SSIM of different deconvolution methods

5.2. Experimental results of real-world data

We also use real-world multi-blurred images to test our approach. In [60], the authors construct a
dataset of fluorescence microscopy images which is used for evaluating denosing algorithms. To
acquire the data, they fix the exposure configuration for each field of view and take 50 images
continuously, all of which are degraded by heavy Poisson noise, thus the authors take the average
of all the 50 images as ground truth. In the dataset, we find that some of the images are blurred
and use the single and multi-image deconvolution methods to restore them. Due to the length
limitation of the paper, we only show the results of one experiment, in which 50 wide-field
microscopy images of the fixed bovine pulmonary artery endothelial (BPAE) cells are taken
as input of the algorithms. The blur kernels of them are the point spreading function of the
system, which is of low-pass nature. Figure 6(a) shows eight of the 50 blurred images, we can
see that they are very blurred and contaminated by heavy Poisson noise, Fig. 6(b) is the average
image. Figure 6(c)-(e) show the results of blind single image deconvolution methods for Fig. 6(b),
Fig. 6(f)-(h) show the results of blind multi-image deconvolution methods with different priors.
We can also see that the methods of L1-framelet [36] and L0-framelet [37] fail to remove the
blur. While the results of L0-gradient [38], Dual-L0 [57] and Surface-aware [58] are degraded
by much amplified noise and ringing artifacts. The proposed method achieves result of the best
quality, which has rich details and few negative artifacts as shown in Fig. 7 . (Larger and clearer
images of Fig. 6 and Fig. 7 as well as the results of all the other experiments are provided in
Supplement 1).

https://doi.org/10.6084/m9.figshare.25232956
https://doi.org/10.6084/m9.figshare.25232956
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Fig. 6. Experiment on real-world wide-field microscopy images of fixed BPAE cells. (a)
Eight of the 50 blurred images. (b) The average of the 50 blurred images. (c) L1-framelet
[36]. (d) L0-framelet [37]. (e) L0-gradient [38]. (f) Dual-L0 prior [57]. (g) Surface-aware
prior [58]. (h) Our log-step gradient prior.

Fig. 7. Zoom of the contents in the red rectangle of corresponding figures in Fig. 6.
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6. Discussion

6.1. Comparison of multi-image deconvolution and single image deconvolution

It is true that multiple captures of the same scene or object may lead to some negative issues,
e.g., reducing temporal resolution, exacerbated photobleaching, etc. However, the multi-image
deconvolution can significantly outperform single image deconvolution in restoration quality
even with the same prior, which makes it have great application prospect in certain application
scenarios. We take two examples to prove this. In Fig. 8(a), we show the fourth blurred image in
the first row in Fig. 4(a). Figure 8(b) is the corresponding clear image and blur kernel. Figure 8(c)
is the result of the proposed method but using single blurred image, while Fig. 8(d) is the
restoration result of the proposed method using the eight blurred images in Fig. 4(a). We can
see that multi-image deconvolution performs much better than single image deconvolution, its
restored image is very close to the ground truth. Similarly, Fig. 9(a) shows one of the blurred
images in Fig. 6(a). The results of single image deconvolution and multi-image deconvolution are
shown in Fig. 9(b) and (c), respectively. We can see that Fig. 9(b) is contaminated by amplified
noise due to the ill-posedness, while Fig. 9(c) is of much higher quality.

Fig. 8. Restoration results of multi-image deconvolution and single image deconvolution
with synthetic blurred images. (a) One of the original blurred images in Fig. 4(a). (b)
The ground truth. (c) Result of single image deconvolution. (d) Result of multi-image
deconvolution.

Fig. 9. Restoration results of multi-image deconvolution and single image deconvolution
with real-world blurred images. (a) One of the original blurred image in Fig. 6(a). (b) Result
of single image deconvolution. (d) Result of multi-image deconvolution.

6.2. Impact of the key hyper-parameters

There are two hyper-parameters µ and α that determine the characteristics of the log-step gradient
prior. Besides the analysis in Subsection 3.1, here we take an experiment to further demonstrate
the impact of them on the restoration results. Figure 10(a) shows the restored image with µ= 100
and α= 1.1, we can see that it has rich details. Then we tune µ to 1000 and keep α unchanged,
the restored image is shown in Fig. 10(b), we can see that some tiny details are smoothed. In
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Fig. 10(c), the restored image is reached by keeping µ= 100 and tune α to 10, many details
are removed and the main edges are sharpened. Thus we can conclude from the experiment
that µ mainly influence image details, while α has a strong impact on both image details and
edges. This is because µ is the weight of squared image gradient while α is the weight of the step
response of squared image gradient, a large α makes the prior perform like the L0-norm based
prior and thus have stronger impact on both image details and edges.

Fig. 10. Restoration results with different µ and α. (a) Result of µ=100, α=1.1. (b) Result
of µ=1000, α=1.1. (d) Result of µ=100, α=10.

When the log-gradient prior is used to restore blurred images contaminated by heavy Poisson
noise, we can assign large values to both µ and α to suppress the amplified noise due to ill-
posedness. A large µ can smooth the noise and prevent the algorithm from wrongly recognizing
the amplified noise as image details, then a large α can remove the noise accurately. That is why
the log-gradient prior performs better than some classic priors, such as the TV and L0-norm of
image gradients.

6.3. Algorithm acceleration scheme

For the above algorithm, if the input contains many blurred images with large size, it will be
computationally expensive, thus it is very necessary to accelerate the proposed algorithm.

Since most modern computers are equipped with high-performance multi-core CPU and GPU
which support parallel computation, we propose a hybrid acceleration scheme based on multi-core
CPU and GPU as follow.

(1) For the complicated operations such as forward and inverse Fourier transforms, we load
the data onto GPU and carry out the calculation.

(2) For the u-problem, we solve for the elements in u1· · ·K in parallel with multi-core CPU.

(3) For the h-problem, we also solve for the elements in h1· · ·K in parallel with multi-core CPU.

(4) For the o-problem and non-blind multi-image deconvolution, if the size of the blurred
images is large, we first segment all the blurred images into groups of multi-patches and
restore them, the results are finally combined to form the whole restored image.

We have provided a detailed demonstration of how to carry out the algorithm acceleration
scheme and verify its effectiveness in Supplement 1.

7. Conclusions

In this paper, we propose a multi-image deconvolution method for restoring blurred images
contaminated by Poisson noise. The main contribution is that we design a very robust sparse prior
which adopts a mixture of logarithm and step functions to regularize the squared image gradients.
In contrast to some other popular sparse priors, the proposed log-step gradient prior can achieve

https://doi.org/10.6084/m9.figshare.25232956
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better results even in the condition of heavy Poisson noise. Furthermore, we design an efficient
algorithm to solve the resulted optimization problem. Experimental results on both synthetic and
real-world data show that our approach is very effective in processing multi-Poissonian blurred
images and the restored image and blur kernels are of high quality.
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